Evaluation of Polynomials through the Simplex Algorithm

نویسنده

  • O. Beaumont
چکیده

This paper presents a method based on the simplex algorithm to evaluate real or complex polynomials, having scalar or interval coeecients. The aim of this method is not to nd exactly the set P(X) where P is a polynomial and X a real interval or a complex disk but to obtain a set which surely contains P(X). Evaluation de polyn^ omes avec l'agorithme du Simplexe. R esum e : Nous pr esentons ici une m ethode, fond ee sur l'agorithme du simplexe, pour evaluer des polyn^ omes r eels ou complexes, que leurs coeecients soient des scalaires ou des intervalles. Notre objectif n'est pas la d etermination exacte de l'ensemble P(X), o u P est un polyn^ ome et X un intervalle, mais l'obtention d'un intervalle qui contient a coup s^ ur P(X).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimizing the Static and Dynamic Scheduling problem of Automated Guided Vehicles in Container Terminals

The Minimum Cost Flow (MCF) problem is a well-known problem in the area of network optimisation. To tackle this problem, Network Simplex Algorithm (NSA) is the fastest solution method. NSA has three extensions, namely Network Simplex plus Algorithm (NSA+), Dynamic Network Simplex Algorithm (DNSA) and Dynamic Network Simplex plus Algorithm (DNSA+). The objectives of the research reported in this...

متن کامل

A new network simplex algorithm to reduce consecutive‎ ‎degenerate pivots and prevent ‎stalling‎

It is well known that in operations research‎, ‎degeneracy can cause a cycle in a network‎ ‎simplex algorithm which can be prevented by maintaining strong‎ ‎feasible bases in each pivot‎. ‎Also‎, ‎in a network consists of n arcs‎ ‎and m nodes‎, ‎not considering any new conditions on the entering‎ ‎variable‎, ‎the upper bound of consecutive degenerate pivots is equal‎ $left( ‎begin{array}{c}‎ ‎n...

متن کامل

On Multivariate Lagrange Interpolation

Lagrange interpolation by polynomials in several variables is studied through a finite difference approach. We establish an interpolation formula analogous to that of Newton and a remainder formula, both of them in terms of finite differences. We prove that the finite difference admits an integral representation involving simplex spline functions. In particular, this provides a remainder formul...

متن کامل

An Efficient Extension of Network Simplex Algorithm

In this paper, an efficient extension of network simplex algorithm is presented. In static scheduling problem, where there is no change in situation, the challenge is that the large problems can be solved in a short time. In this paper, the Static Scheduling problem of Automated Guided Vehicles in container terminal is solved by Network Simplex Algorithm (NSA) and NSA+, which extended the stand...

متن کامل

Trajectory Planning Using High Order Polynomials under Acceleration Constraint

The trajectory planning, which is known as a movement from starting to end point by satisfying the constraints along the path is an essential part of robot motion planning. A common way to create trajectories is to deal with polynomials which have independent coefficients. This paper presents a trajectory formulation as well as a procedure to arrange the suitable trajectories for applications. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996